RoUnd I: Elementary number theory

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM

1. What is the smallest prime number p such that $2^{p}+3$ is not prime?
2. In a numeration system with a positive integral base, the numbers $104 b$ and $241 b$ represent the degree measures of a pair of supplementary angles. Find the base of this numeration system (Supplementary angles add up to 180°).
3. How many positive integers divide both 5852 and 7315 ?

ANSWERS
(1 pt) 1 .
(2 pts) 2. \qquad
(3 pts) 3.
Hudson, Tahanto

Round II: Algebra I - open

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM

1. The sum of two numbers is 8 . Their difference is 12 . Find the smaller one.
2. If $3 z+7 t=22$ and z and t are positive integers, find all possible values of z.
3. Solve $\sqrt{2 x+1}-\sqrt{x-3}=2$ for x

ANSWERS
(1pt) 1.
(2 pts) 2.
(3 pts) 3.

Southbridge, Tantasqua, Westboro

ROUND III: Theory of polynomial equations and functions, complex numbers
ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM

1. Solve: $(2 x-7)(5 x-3)=5 x-3$
2. The polynomial $x^{3}+6 x^{2}+c x+d$ is exactly divisible by both $x-1$ and $x-2$. What must be the value of $c+d$?
3. If $3+i$ is a root of $x^{3}-8 x^{2}+22 x+k=0$, what is the value of k ?

ANSWERS
(1 pt) 1 .
(2 pts) 2. \qquad
(3 pts) 3.

Leicester, Tantasqua, Westboro

ROUND IV : Similarity and Pythagorean relationships

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM

2. There are two squares with dimensions shown. Find the area of the shaded triangle, as a fraction, mixed number, or simplified radical, not as a decimal.
$\overline{\mathrm{AB}} \| \overline{\mathrm{CD}}$ and $\mathrm{AB}=12$.
Find CD.

3.

ANSWERS
(l pt) 1 \qquad
(2 pts) 2. \qquad
(3 pts) 3. \qquad

Burncoat, Clinton, Hudson
$\mathrm{PS}=40, \mathrm{QS}=30, \mathrm{PQ}=50$ and PQRT is a rectangle. Find length RS.

ROUND V: Trigonometry - open

ALL ANSWERS MUST BE IN THE FORM SPECIFIED IN THE PROBLEM

1. Find, in degrees, the least positive integer x for which $\left(2^{\sin ^{2} x}\right)\left(2^{\cos ^{2} x}\right)\left(2^{\tan ^{2} x}\right)=2^{2}$
2. A flat triangular lot faces two streets that meet at an 85° angle. The sides of the lot along the streets are each 160 feet long. Find the perimeter of the lot to the nearest foot.
3. Segment $\overline{\mathrm{QT}}$ is tangent at point Q to a circle with center P . Angle TPQ intercepts arc s on circle P . If $\mathrm{PQ}=5$ and $\mathrm{QT}=12$, find the length of arc s, to the nearest 0.01 .

ANSWERS
(1pt) 1. \qquad
(2 pts) 2. ft
(3 pts) 3.
Doherty, Tahanto, Worcester Academy

TEAM ROUND: Topics of previous rounds and open.

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM EXCEPT THAT NUMBER 4 MAY BE ANSWERED WITH A DECIMAL FORM ROUNDED TO THE NEAREST . 001

1. Find the least prime number greater than 800 .
2. If $f(x)=\frac{x+1}{x}$, find a simplified rule for $f(f(f(x)))$
3. A function f has the property that $f(x y)=f(x)+f(y)$. If $f(2)=a$ and $f(3)=b$, what (in terms of a and b) is $f(108)$?
4.

Not to scale. Find x.
5. In right triangle $\mathrm{TAM}, \mathrm{TA}=25, \mathrm{EM}=12, \mathrm{ET}>\mathrm{EA}$, and $\overline{T A} \perp \overline{E M}$. Find the value of $\sin T$.

6. What is the probability that an arrangement of the letters of the word "ides" will be either "dies" or "side"? Give your answer as a reduced fraction.
7. The bisectors of the exterior angles formed at the vertices of the acute angles of a right triangle meet at point A . What is the measure of the acute angle formed at A ?
8. Point $\mathrm{P}(99,100)$ is reflected across the line $y=-x$ to get point Q . State both coordinates of Q .
9. Consider an extended "Pythagorean" equation $a^{2}+b^{2}+c^{2}=d^{2}$. If a, b, c, and d are all counting numbers and different from one another, what is the smallest possible value for d ?

Auburn, Bromfield, Hudson, Mass Academy, QSC, Quaboag, Shrewsbury, Worcester Academy

ala 1

$$
\begin{array}{lll}
\text { 2. 2 pots } & 5 \\
33 \text { pts } & 4,12 \begin{array}{l}
\text { need } \\
\text { both }
\end{array}
\end{array}
$$

ROUND III	1. 1 pt	$4, \frac{3}{5}$	need both DY
	2. 2 pts	-7	
	3.3 pts	-20	

ROUND
Myth
2. 2 bus
$1 \frac{3}{7}$ a $\frac{10}{7}$
not
decimal
form

$$
\text { 3. } 3 \text { pots } 18
$$

ROUND V	I.	1 pt	45°	may omit
trig	2. 2 pts	536	need this integer	
	3. 3 pts	5.88	need 2 decimal places	

